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A numerical approach is presented for computing unsteady aerodynamic effects on an airfoil that is
undergoing independent pitching and/or plunging motion while attached to an accelerating body. The
acceleration of the body may be at any angle to the horizontal axis. Grid speed terms are incorporated
into a � rst-order � nite volume representation of the unsteady Euler equations, along with the appropriate
acceleration terms for the boundary conditions. Unstructured grid methodology is utilized, along with a
moving grid algorithm, to model the pitching/plunging of the airfoil within the grid. A NACA 0012 airfoil
is considered for all work. Comparisons are made with nonaccelerating numerical and wind-tunnel data
to demonstrate the validity of the methodology. Results are then presented for pitching and nonpitching
airfoil, accelerated body cases to demonstrate the effects of the linear acceleration on the unsteady aero-
dynamics of the airfoil. The quantitative effect of the body acceleration on the aerodynamic coef� cients
is seen to be a function of the type of motion (pitching/nonpitching) imposed upon the airfoil.

Nomenclature
A = cell area
a = acceleration vector
b = airfoil semichord
Cd = section drag coef� cient
C l = section lift coef� cient
c = boundary distance, airfoil chord length
e = total energy, de� ned in proper units for the

context
F, G = Euler � ux vectors in x and y Cartesian directions,

respectively
k = spring stiffness
k1(s) = Wagner function
L = airfoil section lift force
M` = freestream Mach number
n = surface normal vector
p = � uid static pressure
Q = vector of conserved variables
s = nondimensional distance traveled
t = real time
U, V = contravariant velocities
u, v, w = Cartesian velocity components
V = velocity vector
v, w = longitudinal and vertical airfoil velocities in

Wagner theory
x, y = spatial locations
xt, yt = grid speeds

,x yt tb b
= body velocities

,x yt tcs cs
= control surface velocities

a = airfoil geometric angle of attack
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g = ratio of speci� c heats
Dt = real time step
d = grid point displacement
r = � uid density

Introduction

E XPERIMENTAL and computational work in aeronautics
has focused on the need for increased � ight vehicle ma-

neuverability, speed, endurance, and aerodynamic capabilities.
These requirements arise in all types of � ight vehicles, whether
a military aircraft engaging another aircraft in air-to-air com-
bat, a surface-to-air missile engaging and destroying a target,
or even a commercial aircraft delivering passengers or cargo
to their destination safely and ef� ciently. As technology pro-
gresses, and quicker responses are required, the need for faster
and more ef� cient air vehicles becomes increasingly important.

Along with the demand for increased performance and ma-
neuverability of � ight vehicles, however, come additional chal-
lenges to the engineers and designers of the systems. Such
considerations as weight, material properties, structural re-
sponse to increased aerodynamic loading, economic factors,
and highly complex aerodynamic interactions must be dealt
with in a conscientious manner. Physical phenomena that may
have been considered negligible in the past have now become
important factors in the design and analysis of the system. In
particular for this work, the effects of high acceleration rates
on the aerodynamics experienced by the vehicle should be in-
vestigated.

The � eld of computational � uid dynamics (CFD) has played
an increasingly vital role in the design and development pro-
cess of � ight vehicles, as well as many other applications. CFD
techniques have been used to model air� ow about complete
aircraft at steady state,1,2 analyze store (armament) separation
problems,3,4 and investigate the aeroelastic response of an air-
craft structure to aerodynamic loading.5– 7 In addition, numer-
ical techniques have been applied to investigate more basic
� ow physics, such as the effects of pitching and pitch rate of
an airfoil on vortex generation, dynamic stall, and initial � ow
development.8–10

One area that has received very little attention is that of the
unsteady aerodynamic effects on a wing or control surface
because of acceleration of the body to which it is attached. In
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the past, these effects have been considered minimal, and are
generally neglected in favor of steady-state or quasisteady sim-
ulations because the acceleration rates achievable on the body
were considered to be low. However, with improved perfor-
mance of � ight vehicles, the achievable longitudinal and lateral
acceleration rates have increased tremendously,11 to the point
that the effects of such accelerations should be considered in
the design and analysis of � ight vehicles.12 These effects may
become pronounced in such analyses as dynamic stall and � ut-
ter prediction on an accelerating vehicle. For example, the ef-
fect of longitudinal acceleration on the lift coef� cient for an
aircraft accelerating at 0.5 g may be negligible, whereas for a
missile accelerating at 12 g, the effect may be pronounced.

Very little work has been performed in the area of experi-
mental or numerical simulation of the unsteady aerodynamic
effects of a body undergoing longitudinal or transverse accel-
erations. Sawyer and Sullivan13,14 experimentally investigated
the unsteady lift development on a wing undergoing a change
in forward speed, whereas while Ando and Ichikawa15 devel-
oped a more classical numerical approach to analyzing an ac-
celerating body. A general approach to modeling the aerody-
namic effects on an accelerating body using CFD techniques,
however, has not been developed prior to this work.

This paper describes a method of analyzing the unsteady
aerodynamic effects of an airfoil attached to a body that is
undergoing acceleration. The airfoil may be pitching or plung-
ing relative to the body, or may be stationary relative to the
body to which it is attached. The acceleration of the body
relative to the inertial reference frame is speci� ed by the user,
in any coordinate direction. A � nite volume � ow solver was
modi� ed to include a moving grid algorithm for airfoil motion,
as well as to include the proper acceleration terms for the
airfoil motion and body acceleration.16 The resultant code is
used to determine the effects of body acceleration on the aero-
dynamics of a NACA 0012 airfoil, in both pitching and non-
pitching modes. Various magnitudes and directions of body
acceleration are investigated, and trends are established. These
techniques may be used to analyze the effects of body accel-
eration on the aerodynamic coef� cients of a wing or control
surface on the body.

Governing Equations
The governing equations for the � ow are the two-dimen-

sional, unsteady Euler equations. The variables p, r, u, v, and
e represent the pressure, density, Cartesian velocity compo-
nents, and total energy, respectively.

For a control volume V with boundary ­V moving with
constant velocity in a two-dimensional Cartesian coordinate
system, the equations of � uid motion may be written in inte-
gral form as

­
Q dx dy 1 (F dy 1 G dx) = 0 (1)E E­t V ­V

where Q is the vector of conserved � ow variables

r
ru

Q = H rvJ
e

and F and G are the Euler � ux vectors

rU rV
rUu 1 p rVu

F = , G =H rUv J H rVv 1 p J
(e 1 p)U 1 x p (e 1 p)V 1 y pt t

where U and V are the contravariant velocities for the moving
system, de� ned as U = u 2 xt and V = v 2 yt. In these terms,

xt and yt represent the grid velocities in the x and y Cartesian
coordinate directions, respectively.

For the present case of an accelerating body, the grid veloc-
ities are composed of two terms; the velocity resulting from
the movement of the airfoil (pitching/plunging) relative to the
body ( , ), and the velocity of the body relative to thex yt tcs cs

inertial frame of reference ( , . Thus, the grid velocitiesx y )t tb b

may be given as

x = x 1 x , y = y 1 yt t t t t tcs b cs b

Applying this de� nition of the contravariant velocities to the
governing Eq. (1) results in the following forms of the con-
served variable and � ux vectors:

r rU
ru rUu 1 p

Q = , F =H rvJ H rUv J
e (e 1 p)U 1 (x 1 x )pt tcs b

rV
rVu

G = H rVv 1 p J
(e 1 p)V 1 (y 1 y )pt tcs b

Finally, for an ideal gas, the equation of state to complete
the equation set may be written as

1 2 2–p = (g 2 1)r[e 2 (u 1 v )]2

The set of vector equations listed in the preceding text, along
with the constitutive equation, were solved on an unstructured
grid, upon incorporation of the proper boundary conditions, as
developed for an accelerating coordinate system. The boundary
conditions and � ow solver used are described in the following
sections.

Boundary Conditions
A major contribution of this work is that of modeling the

effects of body acceleration on the aerodynamics of an airfoil
that is moving or stationary relative to the body. To accomplish
this task the boundary conditions must be modi� ed to include
the acceleration terms.

At the surface of the airfoil, � ow tangency conditions must
be imposed on the solid surface

V ?n = 0 (2)

This is accomplished by setting the convective mass, momen-
tum, and energy � uxes across the face edges that lie on the
solid surface equal to zero.

The result of the � ow tangency condition is that the only
dependent � ow variable that needs to be evaluated at the im-
permeable boundary for the Euler equations is pressure. To
determine the expression for the pressure gradient normal to
the surface at the impermeable wall, the inner product of the
surface unit normal and the unsteady Euler momentum equa-
tion must be obtained. This inner product, upon simpli� cation,
takes on the following form:

­p ­n ­Vs
= rV ? 2 n ?r (3)

­n ­s ­t

where the term rV ? (­n /­s) would be present for an imper-
meable wall that is stationary or moving at constant velocity,
and the term r(­Vs /­t) represents the additional pressure gra-
dient contribution caused by the acceleration of the solid sur-
face.

This solid surface acceleration contribution term includes
the factor ­Vs /­t, which represents the acceleration of the solid
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Fig. 1 Grid cell edges as springs.

surface relative to the inertial frame of reference. As such, this
factor may be given as

­Vs
= a 1 a (4)cs b

­t

where acs represents the acceleration of the control surface rel-
ative to the moving body reference frame, and ab represents
the acceleration of the body relative to the inertial frame of
reference.

The acceleration of the airfoil relative to the moving body
reference frame is a result of pitching or plunging of the airfoil.
As the airfoil pitches or plunges, and the grid adapts to the
moving airfoil, new spatial location data for each control vol-
ume edge are obtained at every time step. The velocity of each
control surface is obtained using a � rst-order backward differ-
ence of the spatial location. Then, the acceleration is deter-
mined using a � rst-order backward difference in time discret-
ization of the control surface velocities. Thus, as the airfoil
pitches or plunges, the acceleration of the control surface rel-
ative to the moving body reference frame is calculated as

n n2 1V 2 Vcs csna = (5)cs
Dt

The acceleration of the moving body relative to the inertial
frame of reference is speci� ed by the user, and may be pre-
scribed to vary during the run.

On the outer surface of the grid, nonre� ecting � xed far-� eld
boundary conditions are applied as described in the � ow solver
reference manual.16

Finite Volume Flow Solver
The basic � ow solver used for this work is entitled Cobalt.16

It is a � nite volume � ow solver that uses unstructured grid
methodology and an explicit discretization formulation. Cobalt
is based upon the approximate Riemann solver attributed to
Colella.17 It provides the capability of solving either the Euler
or Navier– Stokes equations, along with associated turbulence
models for viscous solutions. The Euler equations were solved
for this work.

Cobalt is capable of handling two- or three-dimensional
problems, as well as axisymmetric ones, with � rst- or second-
order spatial accuracy, and � rst-, second- or third-order tem-
poral accuracy. The problems solved during this work were
two dimensional, and � rst-order accuracy in time and space
was used.

The basic � ow solver was highly modi� ed to provide the
capability of modeling an accelerating body, as well as for the
inclusion of the dynamic grid algorithm for airfoil pitching and
plunging motion speci� cation. Appropriate boundary condi-
tions were incorporated, as described previously.

Moving Grid Algorithm
As the airfoil is permitted to pitch or plunge relative to the

body to which it is attached, the grid points representing the
airfoil move within the grid. The surrounding grid points must,
then, adapt themselves around this new airfoil position. To
accomplish this task, a moving grid algorithm was incorpo-
rated, based upon the work by Batina,18 but modi� ed as de-
scribed in the following text.

Each edge of the grid cells is modeled as a spring, as illus-
trated in Fig. 1. The stiffness of each of these springs is then
taken to be inversely proportional to the length of the edge, as
given by

1
k = (6)m 2 2 1/2[(x 2 x ) 1 ( y 2 y ) ]j i j i

where i and j are the indices of the grid points forming the
endpoints of the edge.

As the airfoil moves, the grid points representing the airfoil
take on the instantaneous positions of the solid surface, while
the grid points representing the outer boundary (the far � eld)
are held stationary. Using the spring analogy, a system of si-
multaneous equations representing the static equilibrium equa-
tions is solved iteratively at each point in time. A predictor–

corrector procedure is utilized in which the predicted displace-
ment is given by

n n21 n n2 1˜ ˜d = 2d 2 d , d = 2d 2 d (7)x x x y y yi i i i i i

where n is the current time level, and n 2 1 is the previous
time level.

The corrected displacement term is then obtained using the
sum of products in the following manner:

˜ ˜k d k dm xO m ym O m
n11 n1 1d = , d = (8)x yi i

k km mO O
Iteration continues using the predictor– corrector scheme un-

til the displacement is suf� ciently converged, according to a
speci� ed convergence criterion. Then, the new locations of the
grid points are obtained by using the converged displacement
and the previous grid locations:

n1 1 n n11 n1 1 n n11x = x 1 d , y = y 1 d (9)i i x i i yi i

A modi� cation to the method for the current work was per-
formed such that, rather than using old data for all grid points
during each predictor– corrector iteration, the most current it-
eration is used for points that have already been examined. In
this way, a Gauss– Seidel formulation is utilized, rather than
the Jacobi iteration scheme used in the reference work.

For this Gauss– Seidel iteration, then, the predictor takes on
the following form for the interior grid points:

n11 n1 1˜ ˜d = d , d = d (10)x x y yi i i i

and the form for the outer boundary and airfoil grid points
becomes

n n˜ ˜d = d , d = d (11)x x y yi i i i

The Gauss– Seidel iteration scheme signi� cantly reduces the
number of iterations required for convergence over the Jacobi
iteration scheme. Typically, only two to three Gauss– Seidel
iterations were required for convergence after a movement of
the airfoil within the grid.

The unstructured grid used for computations throughout this
work is illustrated in Fig. 2. It is composed of a NACA 0012
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Fig. 2 Computational grid with airfoil.

Fig. 3 Closeup of airfoil pitched plus 20 deg.

Fig. 4 Cp values for steady-state case.

airfoil of unit chord length, with a circular outer boundary of
radius 20 units, centered about the leading edge of the airfoil.

The capability of the moving grid algorithm to smoothly
adapt the interior grid about the airfoil as it pitches is dem-
onstrated in Fig. 3. Similar results were obtained for a plunging
and pitching/plunging airfoil, thus demonstrating the ability of
the technique to adapt the grid about a moving solid surface.

Geometric Conservation Law
To avoid the introduction of errors into the � ow solution for

the moving grid, a geometric conservation law must be satis-
� ed. This conservation law is in addition to the laws that gov-
ern the physics of the � ow; those of conservation of mass,
momentum, and energy. Basically, the conservation law states
that the rate of change of volume of the control volume must
be balanced by the growth of the volume boundary.

This conservation law is given in integral form by Thomas
and Lombard19 as

­
dx dy 2 (x dy 2 y dx) = 0 (12)t tE E­t V ­V

To solve for the current cell volume (area in two dimen-
sions), this conservation integral may be discretized in the fol-
lowing manner:

n11 n n11 n11A = A 1 Dt (x D y 2 y Dx ) (13)i i t m t mO m m

where the summation of the products of grid speeds and edge
lengths is performed over all edges composing cell i.

As an improvement over the method of geometric conser-
vation shown in the preceding text, this work recalculates the
cell volumes, cell edge lengths, and all necessary geometric
information after every iteration and grid adaption. In this way,
geometric conservation is precisely ensured for all time.

Exact calculation of cell volumes and cell edge lengths pro-
vides the values necessary to utilize a backward-difference rep-
resentation for the volume time derivative and the grid speeds.

Results and Discussion
Results were computed for several cases, including both

pitching and nonpitching airfoils. The cases chosen were ones

for which solutions have been established, and either compu-
tational or experimental results provided.

For the nonpitching cases, the test cases were selected from
a set of numerically derived Euler AGARD data.20 Results
were obtained for a steady-state NACA 0012 airfoil con� gu-
ration to validate the basic � ow solver. The correlation of pres-
sure coef� cients on the airfoil surface for the case in which
M` = 1.2 and a = 7.0 deg is demonstrated in Fig. 4.

Both � rst- and second-order Cobalt results were determined
to compare well with the published data. Second-order results
provided the best � t with published data, but required approx-
imately four times the computational time required for the � rst-
order solver. For the cases examined, the second-order Cobalt
solution provided a coef� cient of lift value that was within
2.2% of the AGARD data value. Also, the coef� cient of lift
from the � rst-order Cobalt solution was within 0.8% of the
second-order Cobalt solution value. Although this will not be
true for all cases, it was determined that because it was true
for the cases examined in this work, the � rst-order solver pro-
vided results that were close enough to the second-order results
to be usable, and provided a tremendous decrease in compu-
tational time required. Therefore, the � rst-order algorithm was
selected for use in this initial work, the � ow solver was mod-
i� ed, and further testing was performed.

To verify the correctness of the grid speed terms, the airfoil
was assigned a constant Mach number of M` = 0.9 into the
freestream, whereas the freestream Mach number was uniform
at a reduced value of M` = 0.3. This set of values provided a
relative Mach number of 1.2, which is equivalent to the case
described previously. A numerical solution was then obtained,
and compared to the steady-state (stationary airfoil) case.

The close correlation of the moving airfoil and stationary
airfoil cases is illustrated in Fig. 5. Note that the calculated
surface pressure coef� cients are identical for both cases, and
the curves are coincident and indistinguishable. The data for
both cases was obtained using the � rst-order � ow solver.

Various combinations of airfoil Mach numbers, freestream
Mach numbers, and angles of attack were modeled. The results
were identical, as seen in the case just described. Thus, the
representation of the grid speeds in the Euler equations was
veri� ed. The same AGARD test cases were later used for ac-
celerated test runs.

For the pitching airfoil case, a set of wind-tunnel data for a
pitching NACA 0012 was selected.21 This case was run at M`

= 0.3, and the airfoil pitched from a = 20.03 deg to a = 15.54
deg over a time period of 0.01642 s. The reported approximate
pitch rate was 1280 deg/s, and the Reynolds number was 2.7
3 106. Although this test case was experimental and, thus,
viscosity effects were included, it was chosen because of the
ramp motion of the airfoil, the short-time duration, and the
complete data set availability.
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Fig. 5 Cp values for moving airfoil case.

Fig. 8 Accelerated, nonpitching airfoil Cp values.

Fig. 7 Pitching airfoil at t = 0.01642 s.

Fig. 6 Pitching airfoil at t = 0.0 s.

A numerical solution was obtained for the pitching airfoil,
and pressure and lift coef� cients were compared to the ex-
perimental data. The close correlation of the pressure coef� -
cients at t = 0.0 and 0.01642 s, respectively, is shown in Figs.
6 and 7. It should be noted that the � rst-order solver does tend
to underpredict pressure slightly, in both the steady-state and
time-dependent modes. Also, the viscous– inviscid interaction
of the experimental results are, of course, not captured by the
Euler � ow solver.

The close correlation of experimental to numerical results
verify that the pressure terms for the acceleration of the control
surfaces included in the boundary conditions are correct. This
fact permits the investigation of airfoils that are either pitching/
plunging or have no motion, and are attached to an acceler-
ating body.

The accelerating body cases chosen were based on the test
cases used previously for validation of the method. Each case
was started from the steady-state solution, the body was given
an acceleration, and the numerical solution was obtained over
some time period. The results were then compared with the
nonaccelerating case to determine the effects of the accelera-
tion.

Because the accelerating body cases require extensive com-
puter time, only short-duration real-time runs were performed.
This was particularly true for the pitching airfoil cases, because
the moving-grid algorithm was invoked for airfoil motion.
Therefore, for the nonpitching airfoil cases, the real time of
the run was limited to 0.1 s, whereas the entire length of the
pitching airfoil run was modeled.

In addition, a concession to the computer run time was made
in terms of the application of the acceleration. That is, rather
than applying the acceleration in a ramped fashion, as would
occur in the real world, the acceleration was applied in a sud-
den, or stepped, manner. Thus, the acceleration was applied
instantly, which is somewhat unrealistic, but represents a lim-
iting case.

For the nonpitching airfoil case, acceleration values of 5 and
10 g horizontal and 5 and 10 g vertical were run separately.
The curves of surface pressure coef� cient vs x/c at t = 0.0050
s are shown in Fig. 8. For this nonpitching case, the vertical
accelerations produced the greatest variation in surface pres-
sure, as anticipated.

This fact is demonstrated more visibly in Figs. 9 and 10,
which are plots of Cl and Cd vs time for the nonpitching ac-
celerated airfoil. As may be clearly seen, the vertical acceler-
ations, after an initial jump in lift and drag caused by the step
application of the acceleration, tend to reduce the value of the
coef� cients. On the other hand, the horizontal acceleration in-
creases the lift and drag coef� cients as time progresses.

For comparison purposes, a quasi-steady-state case was run
for the 10 g vertical acceleration case, and the lift and drag

coef� cients were plotted in Figs. 9 and 10. It may be seen that,
although the slopes of the curves are similar between the 10
g vertical case and the quasisteady case, the values of the co-
ef� cients are markedly different. Again, a portion of this effect
may be attributed to the manner in which the acceleration was
applied.

For the pitching airfoil, cases were run for acceleration val-
ues of 5 g horizontal and 5 g vertical simultaneously (7.07 g
at 45 deg from horizontal), and 10 g horizontal and 10 g ver-
tical simultaneously (14.14 g at 45 deg from horizontal). In
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Fig. 9 Nonpitching airfoil Cl vs time.

Fig. 10 Nonpitching airfoil Cd vs time.

Fig. 11 Accelerating pitching airfoil Cp distribution at t = 0.00352 s.

Fig. 12 Accelerating pitching airfoil Cp distribution at t = 0.01642 s.

addition, cases of 10 g horizontal, 0.1 g horizontal, and a
quasi-steady-state case for the 14.14 g at 45 deg were run.

Figures 11 and 12 represent the surface pressure coef� cient
distribution over the pitching airfoil at t = 0.00352 s and
0.01642 s, respectively. The pitching airfoil demonstrates
much greater variation in pressure because of acceleration than
the nonpitching case. The initial ballooning of the pressure is
partially a result of the acceleration application rate, and does
tend to diminish with time, as seen in Figs. 11 and 12. How-
ever, throughout the time period of the run, substantial differ-
ences exist between the accelerated case values and the non-
accelerated case values.

Of course, this pressure variation carries over into the values
of the lift and drag coef� cients, as demonstrated in Figs. 13
and 14. The effect of the vertical acceleration is to decrease
the lift with time, while initially increasing, and then decreas-
ing, the drag. The horizontal acceleration has the effect of re-
ducing the lift coef� cient and drag coef� cient, as compared
with the nonaccelerating and quasi-steady-state cases.

To further validate the solutions obtained with this method,
and to observe the effects of acceleration on the aerodynamic
coef� cients, the lift coef� cient for the pitching airfoil case was

compared to classical aerodynamic theory. The classical theory
used was that of Wagner (see Ref. 22) for a thin airfoil pitching
to a � nite angle of attack instantly. The Wagner function is
used to represent the asymptotic approach of the coef� cient of
lift to the steady-state value.

The lift for a section airfoil undergoing indicial pitching
motion is given by Wagner as

L = 2pbrvwk (s) (14)1

where the Wagner function, k1(s), is given by Garrick23 as

k (s) = 1 2 [2/(4 1 s)] (15)1

and s is the nondimensional distance traveled in terms of chord
length, s = vt/c.

The close correlation between the lift coef� cients predicted
by classical theory and those of the current work is illustrated
in Fig. 15. In particular, curves are shown for the pitching
airfoil undergoing no linear acceleration, as well as 0.1 and 10
g horizontal accelerations.

It should be noted that both the nonaccelerating case and
the 0.1 g case very closely match the classical theory. As the
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Fig. 13 Accelerating pitching airfoil Cl vs time.

Fig. 14 Accelerating pitching airfoil Cd vs time.

Fig. 15 Cl plot including classical theory.

horizontal acceleration is increased, the lift coef� cient de-
creases as demonstrated by the 0.1 g curve, but even more
dramatically by the 10 g curve. The nonaccelerating numerical
case deviates from the classical theory by no more than 9%
(below the classical value), and this occurs at the end of the
pitching process. For comparison, the 0.1 g case, at the same
point in time, predicts a lift coef� cient that is 17.8% below
the classical theory. The extreme case for this work, the 10 g
horizontal acceleration case, predicts a lift coef� cient that is
206.5% below the classical theory value at the end of the pitch-
ing process.

Thus, it may be clearly observed that the effect of horizontal
acceleration on the lift coef� cient of the pitching airfoil is to
reduce the value as time progresses.

The results of this work clearly show that acceleration can
contribute signi� cantly to the values of the aerodynamics co-
ef� cients, and that it should not be neglected under certain
circumstances.

Computer Requirements
All of the computations for this work were carried out on a

Silicon Graphics Indigo XS at Ohio Northern University. This
machine was chosen for use to evaluate the capabilities of a
typically available system. The spatial grid was of unstructured
format, and consisted of 2241 grid points, 6486 cell edges, and
4245 grid cells. For the steady-state solutions, the required
CPU time was approximately 0.96 s/iteration. For the pitching
airfoil solutions, approximately 1.6 s/iteration were required.
The explicit � ow solver required real time steps on the order
of 3 3 102 6 s/iteration. Thus, the combination of this � ow
solver with a fairly slow computer means that investigations
of any signi� cant lengths of time are not practical. However,
the use of a faster computational platform and explicit � ow
solver would make this method very useful and practical for
detailed investigation of acceleration effects.

Conclusions and Recommendations
The following conclusions and recommendations are made

regarding the results of this work:
1) A procedure has been developed to numerically model

the effects of linear acceleration on the aerodynamics of a
pitching or nonpitching airfoil. This procedure may be ex-
tended and used for aeroelastic, store separation, and adjusta-
ble engine inlet analyses, as well as a variety of others.

2) Acceleration may contribute signi� cantly to the values of
the unsteady aerodynamic coef� cients, and should not be ne-
glected under certain circumstances. In the case of this work,
lift coef� cients were seen to be altered by as much as 206%,
based upon the type of airfoil motion and the acceleration level
of the body to which the airfoil was attached.

3) The effect of horizontal acceleration is to increase the lift
and drag on the nonpitching airfoil, whereas the effect upon a
pitching airfoil is dependent upon the linear acceleration value
and pitch rate.

4) The effect of vertical acceleration on the airfoil is as
follows. The effect on the nonpitching airfoil is to decrease
the lift and drag. For the pitching airfoil cases, the lift de-
creases, and the drag initially increases, but then subsequently
decreases in value.

5) The linear acceleration should be applied in a ramped
manner, as opposed to a stepped manner, to better model real-
world systems.

6) The theory should be extended into three dimensions to
model practical con� gurations. In addition, the method should
be applied to general moving surface con� gurations, instead
of simply airfoils or wings.

7) A faster � ow solver and computer should be utilized to
perform meaningful analyses. An implicit scheme, vectorized,
and supercomputer would be appropriate.
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8) The Navier– Stokes equations should be incorporated into
the method to capture the viscous effects of acceleration and
study vortex development and interactions.
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