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Numerical Representation of Pitching and Nonpitching
Airfoils Undergoing Linear Acceleration

Jed E. Marquart*
Ohio Northern University, Ada, Ohio 45810

and

Franklin E. Eastept
University of Dayton, Dayton, Ohio 45469

A numerical approach is presented for computing unsteady aerodynamic effects on an airfoil that is
undergoing independent pitching and/or plunging motion while attached to an accelerating body. The
acceleration of the body may be at any angle to the horizontal axis. Grid speed terms are incorporated
into a first-order finite volume representation of the unsteady Euler equations, along with the appropriate
acceleration terms for the boundary conditions. Unstructured grid methodology is utilized, along with a
moving grid algorithm, to model the pitching/plunging of the airfoil within the grid. A NACA 0012 airfoil
is considered for all work. Comparisons are made with nonaccelerating numerical and wind-tunnel data
to demonstrate the validity of the methodology. Results are then presented for pitching and nonpitching
airfoil, accelerated body cases to demonstrate the effects of the linear acceleration on the unsteady aero-
dynamics of the airfoil. The quantitative effect of the body acceleration on the aerodynamic coefficients
is seen to be a function of the type of motion (pitching/nonpitching) imposed upon the airfoil.

Nomenclature

cell area

acceleration vector

airfoil semichord

section drag coefficient

section lift coefficient

boundary distance, airfoil chord length
total energy, defined in proper units for the
context

Euler flux vectors in x and y Cartesian directions,
respectively

spring stiffness

Wagner function

airfoil section lift force

freestream Mach number

surface normal vector

fluid static pressure

vector of conserved variables
nondimensional distance traveled

real time

contravariant velocities

Cartesian velocity components

velocity vector

longitudinal and vertical airfoil velocities in
Wagner theory

spatial locations

grid speeds

= body velocities

= control surface velocities

= airfoil geometric angle of attack
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v = ratio of specific heats
At = real time step

) = grid point displacement
p = fluid density

Introduction

XPERIMENTAL and computational work in aeronautics
has focused on the need for increased flight vehicle ma-
neuverability, speed, endurance, and aerodynamic capabilities.
These requirements arise in all types of flight vehicles, whether
a military aircraft engaging another aircraft in air-to-air com-
bat, a surface-to-air missile engaging and destroying a target,
or even a commercial aircraft delivering passengers or cargo
to their destination safely and efficiently. As technology pro-
gresses, and quicker responses are required, the need for faster
and more efficient air vehicles becomes increasingly important.
Along with the demand for increased performance and ma-
neuverability of flight vehicles, however, come additional chal-
lenges to the engineers and designers of the systems. Such
considerations as weight, material properties, structural re-
sponse to increased aerodynamic loading, economic factors,
and highly complex aerodynamic interactions must be dealt
with in a conscientious manner. Physical phenomena that may
have been considered negligible in the past have now become
important factors in the design and analysis of the system. In
particular for this work, the effects of high acceleration rates
on the aerodynamics experienced by the vehicle should be in-
vestigated.

The field of computational fluid dynamics (CFD) has played
an increasingly vital role in the design and development pro-
cess of flight vehicles, as well as many other applications. CFD
techniques have been used to model airflow about complete
aircraft at steady state,'” analyze store (armament) separation
problems,>* and investigate the aeroelastic response of an air-
craft structure to aerodynamic loading.”’ In addition, numer-
ical techniques have been applied to investigate more basic
flow physics, such as the effects of pitching and pitch rate of
an airfoil on vortex generation, dynamic stall, and initial flow
development.® '°

One area that has received very little attention is that of the
unsteady aerodynamic effects on a wing or control surface
because of acceleration of the body to which it is attached. In
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the past, these effects have been considered minimal, and are
generally neglected in favor of steady-state or quasisteady sim-
ulations because the acceleration rates achievable on the body
were considered to be low. However, with improved perfor-
mance of flight vehicles, the achievable longitudinal and lateral
acceleration rates have increased tremendously,'" to the point
that the effects of such accelerations should be considered in
the design and analysis of flight vehicles.'” These effects may
become pronounced in such analyses as dynamic stall and flut-
ter prediction on an accelerating vehicle. For example, the ef-
fect of longitudinal acceleration on the lift coefficient for an
aircraft accelerating at 0.5 g may be negligible, whereas for a
missile accelerating at 12 g, the effect may be pronounced.

Very little work has been performed in the area of experi-
mental or numerical simulation of the unsteady aerodynamic
effects of a body undergoing longitudinal or transverse accel-
erations. Sawyer and Sullivan'>'* experimentally investigated
the unsteady lift development on a wing undergoing a change
in forward speed, whereas while Ando and Ichikawa' devel-
oped a more classical numerical approach to analyzing an ac-
celerating body. A general approach to modeling the aerody-
namic effects on an accelerating body using CFD techniques,
however, has not been developed prior to this work.

This paper describes a method of analyzing the unsteady
aerodynamic effects of an airfoil attached to a body that is
undergoing acceleration. The airfoil may be pitching or plung-
ing relative to the body, or may be stationary relative to the
body to which it is attached. The acceleration of the body
relative to the inertial reference frame is specified by the user,
in any coordinate direction. A finite volume flow solver was
modified to include a moving grid algorithm for airfoil motion,
as well as to include the proper acceleration terms for the
airfoil motion and body acceleration.'® The resultant code is
used to determine the effects of body acceleration on the aero-
dynamics of a NACA 0012 airfoil, in both pitching and non-
pitching modes. Various magnitudes and directions of body
acceleration are investigated, and trends are established. These
techniques may be used to analyze the effects of body accel-
eration on the aerodynamic coefficients of a wing or control
surface on the body.

Governing Equations

The governing equations for the flow are the two-dimen-
sional, unsteady Euler equations. The variables p, p, u, v, and
e represent the pressure, density, Cartesian velocity compo-
nents, and total energy, respectively.

For a control volume  with boundary 9{) moving with
constant velocity in a two-dimensional Cartesian coordinate
system, the equations of fluid motion may be written in inte-
gral form as

idexdy+f(de+Gd)c)=O (1)
at 9 aQ

where @ is the vector of conserved flow variables

P
_{pu
Q= ov
e

and F and G are the Euler flux vectors

pU pv
pUu +p pVu
F= pUv ’ G = pVv + p

(e + pPU + xp (e + p)V + yp

where U and V are the contravariant velocities for the moving
system, defined as U = u — x, and V = v — y, In these terms,

x, and y, represent the grid velocities in the x and y Cartesian
coordinate directions, respectively.

For the present case of an accelerating body, the grid veloc-
ities are composed of two terms; the velocity resulting from
the movement of the airfoil (pitching/plunging) relative to the
body (x,, ¥.), and the velocity of the body relative to the
inertial frame of reference (x,, y,). Thus, the grid velocities
may be given as

X = Xy + Xy, Ve = Vi, + ¥,

Applying this definition of the contravariant velocities to the
governing Eq. (1) results in the following forms of the con-
served variable and flux vectors:

p pU
_ ] pu _ pUu + p
Q= pv [’ F= pUv
e (e + pU + (x,_+ x,)p
pV
_ pVu
G = pVv + p

e +pV+ (, +y,)p

Finally, for an ideal gas, the equation of state to complete
the equation set may be written as

p=0G — Dple — 3(u® + V7]

The set of vector equations listed in the preceding text, along
with the constitutive equation, were solved on an unstructured
grid, upon incorporation of the proper boundary conditions, as
developed for an accelerating coordinate system. The boundary
conditions and flow solver used are described in the following
sections.

Boundary Conditions

A major contribution of this work is that of modeling the
effects of body acceleration on the aerodynamics of an airfoil
that is moving or stationary relative to the body. To accomplish
this task the boundary conditions must be modified to include
the acceleration terms.

At the surface of the airfoil, flow tangency conditions must
be imposed on the solid surface

Ven=0 2)

This is accomplished by setting the convective mass, momen-
tum, and energy fluxes across the face edges that lie on the
solid surface equal to zero.

The result of the flow tangency condition is that the only
dependent flow variable that needs to be evaluated at the im-
permeable boundary for the Euler equations is pressure. To
determine the expression for the pressure gradient normal to
the surface at the impermeable wall, the inner product of the
surface unit normal and the unsteady Euler momentum equa-
tion must be obtained. This inner product, upon simplification,
takes on the following form:

_=pv.__n.p_‘ 3)

where the term pV:(dn/ds) would be present for an imper-
meable wall that is stationary or moving at constant velocity,
and the term p(dV,/dt) represents the additional pressure gra-
dient contribution caused by the acceleration of the solid sur-
face.

This solid surface acceleration contribution term includes
the factor 9V,/dt, which represents the acceleration of the solid
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surface relative to the inertial frame of reference. As such, this
factor may be given as

v,

=a. + a, 4
o y 4)

where a., represents the acceleration of the control surface rel-
ative to the moving body reference frame, and a, represents
the acceleration of the body relative to the inertial frame of
reference.

The acceleration of the airfoil relative to the moving body
reference frame is a result of pitching or plunging of the airfoil.
As the airfoil pitches or plunges, and the grid adapts to the
moving airfoil, new spatial location data for each control vol-
ume edge are obtained at every time step. The velocity of each
control surface is obtained using a first-order backward differ-
ence of the spatial location. Then, the acceleration is deter-
mined using a first-order backward difference in time discret-
ization of the control surface velocities. Thus, as the airfoil
pitches or plunges, the acceleration of the control surface rel-
ative to the moving body reference frame is calculated as

Vi - V!
s=———— 5
a A7 (5)

The acceleration of the moving body relative to the inertial
frame of reference is specified by the user, and may be pre-
scribed to vary during the run.

On the outer surface of the grid, nonreflecting fixed far-field
boundary conditions are applied as described in the flow solver
reference manual.'®

Finite Volume Flow Solver

The basic flow solver used for this work is entitled Cobalt.
It is a finite volume flow solver that uses unstructured grid
methodology and an explicit discretization formulation. Cobalt
is based upon the approximate Riemann solver attributed to
Colella."” It provides the capability of solving either the Euler
or Navier-Stokes equations, along with associated turbulence
models for viscous solutions. The Euler equations were solved
for this work.

Cobalt is capable of handling two- or three-dimensional
problems, as well as axisymmetric ones, with first- or second-
order spatial accuracy, and first-, second- or third-order tem-
poral accuracy. The problems solved during this work were
two dimensional, and first-order accuracy in time and space
was used.

The basic flow solver was highly modified to provide the
capability of modeling an accelerating body, as well as for the
inclusion of the dynamic grid algorithm for airfoil pitching and
plunging motion specification. Appropriate boundary condi-
tions were incorporated, as described previously.

16

Moving Grid Algorithm

As the airfoil is permitted to pitch or plunge relative to the
body to which it is attached, the grid points representing the
airfoil move within the grid. The surrounding grid points must,
then, adapt themselves around this new airfoil position. To
accomplish this task, a moving grid algorithm was incorpo-
rated, based upon the work by Batina,"® but modified as de-
scribed in the following text.

Each edge of the grid cells is modeled as a spring, as illus-
trated in Fig. 1. The stiffness of each of these springs is then
taken to be inversely proportional to the length of the edge, as
given by

1
B [(xj - xi)2 + (y,- - yi)2]1/2

(6)

m

Fig. 1 Grid cell edges as springs.

where i and j are the indices of the grid points forming the
endpoints of the edge.

As the airfoil moves, the grid points representing the airfoil
take on the instantaneous positions of the solid surface, while
the grid points representing the outer boundary (the far field)
are held stationary. Using the spring analogy, a system of si-
multaneous equations representing the static equilibrium equa-
tions is solved iteratively at each point in time. A predictor-
corrector procedure is utilized in which the predicted displace-
ment is given by

§,=281 080",  §,=28 -3 (7)
where n is the current time level, and n — 1 is the previous
time level.

The corrected displacement term is then obtained using the
sum of products in the following manner:

> ks, > k3,

+1 + 1
8% = oy =

Iteration continues using the predictor-corrector scheme un-
til the displacement is sufficiently converged, according to a
specified convergence criterion. Then, the new locations of the
grid points are obtained by using the converged displacement
and the previous grid locations:

(8)

x;r+1 - X:’ + 8:+1, y;r+1 - y:r + 8:1’+1 (9)

A modification to the method for the current work was per-
formed such that, rather than using old data for all grid points
during each predictor-corrector iteration, the most current it-
eration is used for points that have already been examined. In
this way, a Gauss-Seidel formulation is utilized, rather than
the Jacobi iteration scheme used in the reference work.

For this Gauss-Seidel iteration, then, the predictor takes on
the following form for the interior grid points:

5,=8y" 5, =8y (10)

and the form for the outer boundary and airfoil grid points
becomes

§,=38. &, =8 (1)

The Gauss-Seidel iteration scheme significantly reduces the
number of iterations required for convergence over the Jacobi
iteration scheme. Typically, only two to three Gauss-Seidel
iterations were required for convergence after a movement of
the airfoil within the grid.

The unstructured grid used for computations throughout this
work is illustrated in Fig. 2. It is composed of a NACA 0012
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Fig. 3 Closeup of airfoil pitched plus 20 deg.

airfoil of unit chord length, with a circular outer boundary of
radius 20 units, centered about the leading edge of the airfoil.

The capability of the moving grid algorithm to smoothly
adapt the interior grid about the airfoil as it pitches is dem-
onstrated in Fig. 3. Similar results were obtained for a plunging
and pitching/plunging airfoil, thus demonstrating the ability of
the technique to adapt the grid about a moving solid surface.

Geometric Conservation Law

To avoid the introduction of errors into the flow solution for
the moving grid, a geometric conservation law must be satis-
fied. This conservation law is in addition to the laws that gov-
ern the physics of the flow; those of conservation of mass,
momentum, and energy. Basically, the conservation law states
that the rate of change of volume of the control volume must
be balanced by the growth of the volume boundary.

This conservation law is given in integral form by Thomas
and Lombard" as

d
—fdxdy—f (x,dy — y,dx)=0 (12)
at Q a0

To solve for the current cell volume (area in two dimen-
sions), this conservation integral may be discretized in the fol-
lowing manner:

AP = AT+ At DY Ay, — Y Ax,) (13)
where the summation of the products of grid speeds and edge
lengths is performed over all edges composing cell i.

As an improvement over the method of geometric conser-
vation shown in the preceding text, this work recalculates the
cell volumes, cell edge lengths, and all necessary geometric
information after every iteration and grid adaption. In this way,
geometric conservation is precisely ensured for all time.

Exact calculation of cell volumes and cell edge lengths pro-
vides the values necessary to utilize a backward-difference rep-
resentation for the volume time derivative and the grid speeds.

Results and Discussion

Results were computed for several cases, including both
pitching and nonpitching airfoils. The cases chosen were ones

C
p
1/ — AGARD
08 _: ....... Cobalt First Order
Lo . Cobalt Second Order
1.2
1.4‘11|||l|lll\lllllI}\Iilllllll\ll]|||||}\|‘\]1|||||

0 01 02 03 04 05 06 07 08 09 1

x/c

Fig. 4 C, values for steady-state case.

for which solutions have been established, and either compu-
tational or experimental results provided.

For the nonpitching cases, the test cases were selected from
a set of numerically derived Euler AGARD data.”® Results
were obtained for a steady-state NACA 0012 airfoil configu-
ration to validate the basic flow solver. The correlation of pres-
sure coefficients on the airfoil surface for the case in which
M. = 1.2 and a = 7.0 deg is demonstrated in Fig. 4.

Both first- and second-order Cobalt results were determined
to compare well with the published data. Second-order results
provided the best fit with published data, but required approx-
imately four times the computational time required for the first-
order solver. For the cases examined, the second-order Cobalt
solution provided a coefficient of lift value that was within
2.2% of the AGARD data value. Also, the coefficient of lift
from the first-order Cobalt solution was within 0.8% of the
second-order Cobalt solution value. Although this will not be
true for all cases, it was determined that because it was true
for the cases examined in this work, the first-order solver pro-
vided results that were close enough to the second-order results
to be usable, and provided a tremendous decrease in compu-
tational time required. Therefore, the first-order algorithm was
selected for use in this initial work, the flow solver was mod-
ified, and further testing was performed.

To verify the correctness of the grid speed terms, the airfoil
was assigned a constant Mach number of M., = 0.9 into the
freestream, whereas the freestream Mach number was uniform
at a reduced value of M. = 0.3. This set of values provided a
relative Mach number of 1.2, which is equivalent to the case
described previously. A numerical solution was then obtained,
and compared to the steady-state (stationary airfoil) case.

The close correlation of the moving airfoil and stationary
airfoil cases is illustrated in Fig. 5. Note that the calculated
surface pressure coefficients are identical for both cases, and
the curves are coincident and indistinguishable. The data for
both cases was obtained using the first-order flow solver.

Various combinations of airfoil Mach numbers, freestream
Mach numbers, and angles of attack were modeled. The results
were identical, as seen in the case just described. Thus, the
representation of the grid speeds in the Euler equations was
verified. The same AGARD test cases were later used for ac-
celerated test runs.

For the pitching airfoil case, a set of wind-tunnel data for a
pitching NACA 0012 was selected.” This case was run at M.,
= 0.3, and the airfoil pitched from o = —0.03 deg to o = 15.54
deg over a time period of 0.01642 s. The reported approximate
pitch rate was 1280 deg/s, and the Reynolds number was 2.7
X 10° Although this test case was experimental and, thus,
viscosity effects were included, it was chosen because of the
ramp motion of the airfoil, the short-time duration, and the
complete data set availability.
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0.8 Stationary Airfoil

10 e Moving Airfoil

1.2
1.4_lll\lllllll\\4’l\llll]lll[\]l‘lllllll\|I|I\|l|\\]

0 01 02 03 04 05 0.6 07 08 09 1
x/c

Fig. 5 C, values for moving airfoil case.

A numerical solution was obtained for the pitching airfoil,
and pressure and lift coefficients were compared to the ex-
perimental data. The close correlation of the pressure coeffi-
cients at r = 0.0 and 0.01642 s, respectively, is shown in Figs.
6 and 7. It should be noted that the first-order solver does tend
to underpredict pressure slightly, in both the steady-state and
time-dependent modes. Also, the viscous-inviscid interaction
of the experimental results are, of course, not captured by the
Euler flow solver.

The close correlation of experimental to numerical results
verify that the pressure terms for the acceleration of the control
surfaces included in the boundary conditions are correct. This
fact permits the investigation of airfoils that are either pitching/
plunging or have no motion, and are attached to an acceler-
ating body.

The accelerating body cases chosen were based on the test
cases used previously for validation of the method. Each case
was started from the steady-state solution, the body was given
an acceleration, and the numerical solution was obtained over
some time period. The results were then compared with the
nonaccelerating case to determine the effects of the accelera-
tion.

Because the accelerating body cases require extensive com-
puter time, only short-duration real-time runs were performed.
This was particularly true for the pitching airfoil cases, because
the moving-grid algorithm was invoked for airfoil motion.
Therefore, for the nonpitching airfoil cases, the real time of
the run was limited to 0.1 s, whereas the entire length of the
pitching airfoil run was modeled.

In addition, a concession to the computer run time was made
in terms of the application of the acceleration. That is, rather
than applying the acceleration in a ramped fashion, as would
occur in the real world, the acceleration was applied in a sud-
den, or stepped, manner. Thus, the acceleration was applied
instantly, which is somewhat unrealistic, but represents a lim-
iting case.

For the nonpitching airfoil case, acceleration values of 5 and
10 g horizontal and 5 and 10 g vertical were run separately.
The curves of surface pressure coefficient vs x/c at t = 0.0050
s are shown in Fig. 8. For this nonpitching case, the vertical
accelerations produced the greatest variation in surface pres-
sure, as anticipated.

This fact is demonstrated more visibly in Figs. 9 and 10,
which are plots of C;, and C, vs time for the nonpitching ac-
celerated airfoil. As may be clearly seen, the vertical acceler-
ations, after an initial jump in lift and drag caused by the step
application of the acceleration, tend to reduce the value of the
coefficients. On the other hand, the horizontal acceleration in-
creases the lift and drag coefficients as time progresses.

For comparison purposes, a quasi-steady-state case was run
for the 10 g vertical acceleration case, and the lift and drag

coefficients were plotted in Figs. 9 and 10. It may be seen that,
although the slopes of the curves are similar between the 10
g vertical case and the quasisteady case, the values of the co-
efficients are markedly different. Again, a portion of this effect
may be attributed to the manner in which the acceleration was
applied.

For the pitching airfoil, cases were run for acceleration val-
ues of 5 g horizontal and 5 g vertical simultaneously (7.07 g
at 45 deg from horizontal), and 10 g horizontal and 10 g ver-
tical simultaneously (14.14 g at 45 deg from horizontal). In

04_7 » Upper Surface - Experiment
0.6 o Lower Surface - Experiment
0. S—t Euler Steady State
1 Euler Time Dependent
1.0
1.2 7""I""I”"l“"l""I'”‘l""I"”I""I"“

0 01 02 03 04 05 06 07 08 09 1
x/c
Fig. 6 Pitching airfoil at # = 0.0 s.

-10.0
%0 « Upper Surface - Experiment
- e Lower Surface - Experiment
Euler Steady State
-6.0 L e Euler Time Dependent
C n
P40
n
-2.0 e -
0.0 ———e
20— T T e e
0 01 02 03 04 05 06 07 08 09 1
x/c
Fig. 7 Pitching airfoil at ¢ = 0.01642 s.
0.8
0.6
0.4
0.2
0.0
0.2
C, 0.4
0.6
0.8 5g Horizontal
1.0 - — — 5gVertical
1.2 ve=—.— 10g Horizontal
S 10g Vertical
L6 ~frrrr e e

0 01 02 03 04 05 06 07 08 09 1
x/c

Fig. 8 Accelerated, nonpitching airfoil C,, values.
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Fig. 9 Nonpitching airfoil C, vs time.
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Fig. 10 Nonpitching airfoil C_vs time.

addition, cases of 10 g horizontal, 0.1 g horizontal, and a
quasi-steady-state case for the 14.14 g at 45 deg were run.

Figures 11 and 12 represent the surface pressure coefficient
distribution over the pitching airfoil at # = 0.00352 s and
0.01642 s, respectively. The pitching airfoil demonstrates
much greater variation in pressure because of acceleration than
the nonpitching case. The initial ballooning of the pressure is
partially a result of the acceleration application rate, and does
tend to diminish with time, as seen in Figs. 11 and 12. How-
ever, throughout the time period of the run, substantial differ-
ences exist between the accelerated case values and the non-
accelerated case values.

Of course, this pressure variation carries over into the values
of the lift and drag coefficients, as demonstrated in Figs. 13
and 14. The effect of the vertical acceleration is to decrease
the lift with time, while initially increasing, and then decreas-
ing, the drag. The horizontal acceleration has the effect of re-
ducing the lift coefficient and drag coefficient, as compared
with the nonaccelerating and quasi-steady-state cases.

To further validate the solutions obtained with this method,
and to observe the effects of acceleration on the aerodynamic
coefficients, the lift coefficient for the pitching airfoil case was

5.0~ e
0 01 02 03 04 05 0.6 0.7 0.8 09 1

x/c

5g — - — 10gH
— -« — 0.1gH
= = = Quasi-Steady (10g)

Fig. 11 Accelerating pitching airfoil C, distribution at ¢ = 0.00352 s.

-1.0

L1l

-6.04

5.0
403%

3.0
C 3

3.0-Frrrrprrr
0 0.1 02 03 04 05 06 07 08 09 1

x/c

S5g — - — 10gH
— - - — 01gH
- - = Quasi-Steady (10g)

Fig. 12 Accelerating pitching airfoil C,, distribution at ¢ = 0.01642 s.

compared to classical aerodynamic theory. The classical theory
used was that of Wagner (see Ref. 22) for a thin airfoil pitching
to a finite angle of attack instantly. The Wagner function is
used to represent the asymptotic approach of the coefficient of
lift to the steady-state value.

The lift for a section airfoil undergoing indicial pitching
motion is given by Wagner as

L = 2mwbpvwk,(s) (14)
where the Wagner function, k,(s), is given by Garrick™ as
ki(s) =1 — [2/(4 + )] (15)

and s is the nondimensional distance traveled in terms of chord
length, s = vt/c.

The close correlation between the lift coefficients predicted
by classical theory and those of the current work is illustrated
in Fig. 15. In particular, curves are shown for the pitching
airfoil undergoing no linear acceleration, as well as 0.1 and 10
g horizontal accelerations.

It should be noted that both the nonaccelerating case and
the 0.1 g case very closely match the classical theory. As the
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767

horizontal acceleration is increased, the lift coefficient de-
creases as demonstrated by the 0.1 g curve, but even more
dramatically by the 10 g curve. The nonaccelerating numerical
case deviates from the classical theory by no more than 9%
(below the classical value), and this occurs at the end of the
pitching process. For comparison, the 0.1 g case, at the same
point in time, predicts a lift coefficient that is 17.8% below
the classical theory. The extreme case for this work, the 10 g
horizontal acceleration case, predicts a lift coefficient that is
206.5% below the classical theory value at the end of the pitch-
ing process.

Thus, it may be clearly observed that the effect of horizontal
acceleration on the lift coefficient of the pitching airfoil is to
reduce the value as time progresses.

The results of this work clearly show that acceleration can
contribute significantly to the values of the aerodynamics co-
efficients, and that it should not be neglected under certain
circumstances.

Computer Requirements

All of the computations for this work were carried out on a
Silicon Graphics Indigo XS at Ohio Northern University. This
machine was chosen for use to evaluate the capabilities of a
typically available system. The spatial grid was of unstructured
format, and consisted of 2241 grid points, 6486 cell edges, and
4245 grid cells. For the steady-state solutions, the required
CPU time was approximately 0.96 s/iteration. For the pitching
airfoil solutions, approximately 1.6 s/iteration were required.
The explicit flow solver required real time steps on the order
of 3 X 10 ° s/iteration. Thus, the combination of this flow
solver with a fairly slow computer means that investigations
of any significant lengths of time are not practical. However,
the use of a faster computational platform and explicit flow
solver would make this method very useful and practical for
detailed investigation of acceleration effects.

Conclusions and Recommendations

The following conclusions and recommendations are made
regarding the results of this work:

1) A procedure has been developed to numerically model
the effects of linear acceleration on the aerodynamics of a
pitching or nonpitching airfoil. This procedure may be ex-
tended and used for aeroelastic, store separation, and adjusta-
ble engine inlet analyses, as well as a variety of others.

2) Acceleration may contribute significantly to the values of
the unsteady aerodynamic coefficients, and should not be ne-
glected under certain circumstances. In the case of this work,
lift coefficients were seen to be altered by as much as 206%,
based upon the type of airfoil motion and the acceleration level
of the body to which the airfoil was attached.

3) The effect of horizontal acceleration is to increase the lift
and drag on the nonpitching airfoil, whereas the effect upon a
pitching airfoil is dependent upon the linear acceleration value
and pitch rate.

4) The effect of vertical acceleration on the airfoil is as
follows. The effect on the nonpitching airfoil is to decrease
the lift and drag. For the pitching airfoil cases, the lift de-
creases, and the drag initially increases, but then subsequently
decreases in value.

5) The linear acceleration should be applied in a ramped
manner, as opposed to a stepped manner, to better model real-
world systems.

6) The theory should be extended into three dimensions to
model practical configurations. In addition, the method should
be applied to general moving surface configurations, instead
of simply airfoils or wings.

7) A faster flow solver and computer should be utilized to
perform meaningful analyses. An implicit scheme, vectorized,
and supercomputer would be appropriate.
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8) The Navier- Stokes equations should be incorporated into
the method to capture the viscous effects of acceleration and
study vortex development and interactions.
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